We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Prosthetics You Can Feel

Surgery could give amputees sensory feedback from their prosthetic limbs.

A new surgical technique devised by MIT researchers could allow prosthetic limbs to work much more like natural limbs. With the help of muscle grafts and feedback from existing nerves, amputees would be able to sense where their prosthetics are in space and feel how much force is being applied to them.

This type of system could help reduce the rate at which patients decide to reject their prosthetic limbs, which is around 20 percent.

This story is part of the September/October 2017 Issue of the MIT News magazine
See the rest of the issue

“We’re talking about a dramatic improvement in patient care,” says Hugh Herr, SM ’93, a professor of media arts and sciences and the senior author of the study. He adds that until now, there’s been no robust neural method for a person using a prosthesis after limb amputation to sense where the prosthetic limb is in space, or to feel forces applied to it.

In the new study, which appeared in Science Robotics, the researchers demonstrated in rats that their technique generates sensory feedback from muscles and tendons to the nervous system, which should be able to convey information about a prosthetic limb’s placement and the forces applied to it. They now plan to begin implementing this approach in human amputees, including Herr, whose legs were amputated below the knee when he was 17.

The surgery aims to restore some of the physical basis for proprioception, the body’s sense of its own position and movement. Most muscles that control limb movement occur in what are known as agonist-antagonist pairs: one muscle stretches when the other contracts, and both send sensory information back to the brain. Without these muscle pairs, which are severed in a conventional amputation, people who use artificial limbs have no way of sensing where those limbs are.

“They have to visually follow their hands or their limbs, because there isn’t any feedback from the device or residual limb that tells their brain where their prosthetic limbs are in space,” says Shriya Srinivasan, a graduate student in the Harvard-MIT Program in Health Sciences and Technology (HST) and the paper’s lead author.

Even after the muscles are severed, however, the nerves that sent signals to the amputated limb remain intact in many amputees. Those surviving nerves are the key to the new system: they can be connected to muscle pairs grafted from another part of the body and to a control system Herr’s lab is now developing, which includes a microprocessor that will translate nerve signals into instructions for moving the prosthetic limb.

When the brain sends signals instructing a limb to move, one of the grafted muscles will contract and its agonist will extend, providing neural feedback that allows the patient to feel where the limb is in space.

“Using this framework, the patient will not have to think about how to control their artificial limb,” Herr says. “When a patient imagines moving their phantom limb, signals will be sent through nerves to the surgically constructed muscle pairs. Implanted muscle electrodes will then sense these signals for the control of synthetic motors in the external prosthesis.”

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Next in MIT News
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.