Business Impact

An Interactive Whitepaper: Continuous engineering for the Internet of Things

Adapt time-tested methods to meet new engineering challenges

Nov 14, 2017
Sponsored Content

Provided by IBM

Business Impact

An Interactive Whitepaper: Continuous engineering for the Internet of Things

Adapt time-tested methods to meet new engineering challenges

Nov 14, 2017
Sponsored Content

Provided by IBM

The hype around the Internet of Things is now rapidly giving way to the reality of implemented products and services.

Analyst firm IDC predicts that the worldwide IoT market spend will grow from approximately USD 690 billion in 2015 to USD 1.46 trillion in 2020 with a compound annual growth rate of 16.1 percent. The installed base of IoT endpoints will grow from 12.1 billion in 2015, exceeding 30 billion in 2020.

Connectivity has moved from being an interesting feature to being a so-called “price of entry” requirement to achieve competitive product value and differentiation in many of today’s markets. IoT products and services can range from the basic to the critical: cost-critical, availability-critical, brand-critical, even safety-critical. Therefore, the makers of products and services must understand and respond appropriately to the challenges of engineering for the IoT.

As connectivity increases the capabilities of IoT products and services, so it also increases their complexity. New capabilities bring new failure modes. Added complexity—unless managed appropriately—can increase the likelihood of failures occurring. Furthermore, the consequences of failure can themselves be hard to predict.

Therefore, increasingly critical products and services require robust IoT engineering. The primary challenges include:

  • Delivering compelling functionality (where the requirements might be continuously changing)
  • Delivering appropriate dependability, in the form of safety (freedom from harm), reliability (availability of services) and security (freedom from intrusion, interference or theft)
  • Delivering the solution in an open context—where some of the technologies and components that contribute to the solution are not under direct commercial or engineering control
  • Delivering the solution with appropriate speed and at appropriate cost to respond to competitive threats and changing market demand